Computer Vision Metrics provides an extensive survey and analysis of over 100 current and historical feature description and machine vision methods, with a detailed taxonomy for local, regional and global features. This book provides necessary background to develop intuition about why interest point detectors and feature descriptors actually work, how they are designed, with observations about tuning the methods for achieving robustness and invariance targets for specific applications. The survey is broader than it is deep, with over 540 references provided to dig deeper. The taxonomy includes search methods, spectra components, descriptor representation, shape, distance functions, accuracy, efficiency, robustness and invariance attributes, and more. Rather than providing ‘how-to’ source code examples and shortcuts, this book provides a counterpoint discussion to the many fine opencv community source code resources available for hands-on practitioners.
- Lecturas recomendadas / Recommended Readings
- Estudiar en EEUU / Study in USA
- Aprendizaje del inglés / English Learning
- Lecturas Graduadas / Graded Readings
- Educación en línea / Online Teaching
- Gran Lectura / Big Read
- Día de Acción de Gracias / Thanksgiving Day
- Navidad / Christmas
- Desarrollo Profesional y Liderazgo
- Black History Month
- Día Internacional de la Mujer / International Women's Day
- Día del Idioma
- Mario Vargas Llosa: una vida en palabras
- See all ebooks collections
- Audiobooks en inglés
- Audiobooks en castellano
- Audiobooks en castellano para niños
- See all audiobooks collections